Towards accountability in the use of Artificial Intelligence for Public Administrations

Michele Loi und Matthias Spielkamp analyze the regulatory content of 16 guideline documents about the use of AI in the public sector, by mapping their requirements to those of our philosophical account of accountability, and conclude that while some guidelines refer processes that amount to auditing, it seems that the debate would benefit from more clarity about the nature of the entitlement of auditors and the goals of auditing, also in order to develop ethically meaningful standards with respect to which different forms of auditing can be evaluated and compared.

In their analysis, Loi and Spielkamp argue that the phenomena of distributed responsibility, induced acceptance, and acceptance through ignorance constitute instances of imperfect delegation when tasks are delegated to computationally-driven systems. Imperfect delegation challenges human accountability. We hold that both direct public accountability via public transparency and indirect public accountability via transparency to auditors in public organizations can be both instrumentally ethically valuable and required as a matter of deontology from the principle of democratic self-government.

Michele Loi (he/him)

Senior Research Advisor

Photo: Julia Bornkessel

Michele Loi, Ph.D., is Senior Researcher at the Institute of Biomedical Ethics and the History of Medicine and Research Fellow at the Digital Society Initiative at the University of Zurich. In 2015–2016, he coordinated the writing of the World Health Organization's Guidance For Managing Ethical Issues In Infectious Disease Outbreaks as a consultant and helped drafting the World Health Organization's Guidelines on Ethical Issues in Public Health Surveillance.